THE COMING FAMINE

THE GLOBAL FOOD CRISIS AND WHAT WE CAN DO TO AVOID IT
Prospects of Palm Kernel Cake use in Cattle Feed

Dr. Tariq Mahmood
M.S. Total Quality Management
Diploma in Feed Technology and Formulation, NCSU, USA

General Manager Operations
Presentation Plan

- Part 1: Introduction to animal feed
- Part 2: Introduction to PKC
- Part 3: Opportunities and Potentials
- Part 4: Quality evaluation of PKC
Animal Production Process

Inputs
Feed 70%

Measurement Analysis

Resources

Output
Why animals need Feed?

- To Grow
- To Live
- To Produce
Feed Provides Nutrients

- Protein
- Carbohydrates
- Fat
- Minerals
- Vitamins
- Water
Nutrient Drain through Milk

Milk Yield 1

<table>
<thead>
<tr>
<th>Nutrients in Milk</th>
<th>Gms</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>840</td>
<td></td>
</tr>
</tbody>
</table>

Milk Yield 10

<table>
<thead>
<tr>
<th>Nutrients in Milk</th>
<th>Gms</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>8860</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>8400</td>
<td></td>
</tr>
</tbody>
</table>
Feeding of Dairy Animals

Feed of the Animal

Roughages
50% (DM Basis)

- Green Fodder
- Dry Roughage

Concentrate
50% (DM Basis)

- Vanda Feed
Concentrate Feeds
Concentrated source of Nutrients

- Dairy animals with high genetic potential for milk production also have high requirements for energy and protein.

- Given that animals can eat only a certain amount per day, roughage alone cannot supply the required amount of energy and protein.

- Generally, the purpose of adding concentrates to the ration of dairy cattle is to provide a concentrated source of energy and protein to supplement the roughage to meet the animal requirements.
Energy Sources

- **Fat Sources**
 - Vegetable Oil Seed
 - Animal Fat/ Lard

- **Carbohydrate Sources**
 - Grains
 - Corn
 - Rice
 - Wheat
 - Sorghum
 - Barley
 - Grain Milling Byproducts
 - Wheat Bran
 - Wheat Middling
 - Rice Polishing
Protein Sources

- **Vegetable Sources**
 - Vegetable Oil Meals
 - Vegetable Oil Cakes
 - Cotton Seed
 - Rapeseed
 - Canola
 - Soybean
 - Sunflower
 - *Palm Kernel cake*
 - Linseed
 - Safflower
 - Popyseed
Basics of Ration Formulation

- Step 1: Product Specification
 (Nutrient Requirement of the Feed)

- Step 2: Raw Material Selection
 (Availability, price, nutrient content, anti-nutrient content and other preferences)

- Step 3: Designing a Product
 (Feed Formulation, Numerical Calculations, and non-numerical expressions of the Feed stuffs)
Introduction to Palm Kernel Cake (PKC)
Palm Products

- Crude Palm Oil
- **Palm Kernel Cake/Meal**
- Palm Fatty Acid Distillate (PFAD)
- Biomass

Other By-Products
- Oil Palm Fronds (OPF)
- Palm Press Fiber (PPF)
- Palm oil mill effluent (POME)
Palm Kernel Cake/ Expeller (PKC/E)
Palm Kernel Cake/ Expeller (PKC/E)

- Palm Kernel is the endosperm of white cellular mass coated with tough black membrane or testa, which is encasted in a thick shell or endocarp of an oil palm seed.
- PKC/E obtained from the palm kernel after palm kernel oil has been extracted.
Composition of Palm Kernel

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fats</td>
<td>50 %</td>
</tr>
<tr>
<td>Crude Protein</td>
<td>9 %</td>
</tr>
<tr>
<td>Carbohydrates (Starches, Sugars, Cellulose)</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Source: Malaysian Palm Oil Council
Composition of PKC

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter (DM)</td>
<td>93 %</td>
</tr>
<tr>
<td>Crude Protein (CP)</td>
<td>16 %</td>
</tr>
<tr>
<td>Crude Fiber (CF)</td>
<td>17 %</td>
</tr>
<tr>
<td>Ether Extract (EE)</td>
<td>08 %</td>
</tr>
<tr>
<td>Ash</td>
<td>4-5 %</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>0.3 %</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>0.7 %</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>0.27 %</td>
</tr>
<tr>
<td>Metabolisable Energy (ME)</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>2510 K Cal</td>
</tr>
<tr>
<td>Chicken</td>
<td>1673 K Cal</td>
</tr>
</tbody>
</table>

Source: Malaysian Palm Oil Council
Fiber Composition

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Free Extract (NFE)</td>
<td>52 %</td>
</tr>
<tr>
<td>Crude Fiber (CF)</td>
<td>17 %</td>
</tr>
<tr>
<td>Acid Detergent Fiber (ADF)</td>
<td>31 %</td>
</tr>
<tr>
<td>Neutral Detergent Fiber (NDF)</td>
<td>72 %</td>
</tr>
<tr>
<td>Major Carbohydrates of Cell Wall</td>
<td></td>
</tr>
<tr>
<td>Mannose</td>
<td>56.4 %</td>
</tr>
<tr>
<td>Glucose</td>
<td>11.6 %</td>
</tr>
</tbody>
</table>

Source: Malaysian Palm Oil Council
Amino Acid Profile

<table>
<thead>
<tr>
<th>Protein/Amino acid</th>
<th>Composition (%)</th>
<th>Availability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Protein (as % of PKC)</td>
<td>16.06</td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>0.92</td>
<td>87.0</td>
</tr>
<tr>
<td>Arginine</td>
<td>2.18</td>
<td>-</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>1.55</td>
<td>64.4</td>
</tr>
<tr>
<td>Cystine</td>
<td>0.20</td>
<td>-</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>3.15</td>
<td>74.4</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.82</td>
<td>25.8</td>
</tr>
<tr>
<td>Histidine</td>
<td>0.29</td>
<td>66.8</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>0.62</td>
<td>64.9</td>
</tr>
<tr>
<td>Leucine</td>
<td>1.11</td>
<td>66.7</td>
</tr>
</tbody>
</table>
Amino Acid Profile

<table>
<thead>
<tr>
<th>Protein/Amino acid</th>
<th>Composition (%)</th>
<th>Availability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Protein (as % of PKC)</td>
<td>16.06</td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>0.92</td>
<td>87.0</td>
</tr>
<tr>
<td>Arginine</td>
<td>2.18</td>
<td>-</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>1.55</td>
<td>64.4</td>
</tr>
<tr>
<td>Cystine</td>
<td>0.20</td>
<td>-</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>3.15</td>
<td>74.4</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.82</td>
<td>25.8</td>
</tr>
<tr>
<td>Histidine</td>
<td>0.29</td>
<td>66.8</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>0.62</td>
<td>64.9</td>
</tr>
<tr>
<td>Leucine</td>
<td>1.11</td>
<td>66.7</td>
</tr>
</tbody>
</table>

Source: (Yeong et al., 1983)
Palm Kernel Cake use in Cattle Feed
Feeding Advantages with PKC

- High energy Source
- High Quality Protein
- Balanced Mineral Content
- Good Palatability
- No Toxins
- Availability
- Cost effectiveness
Ideal Concentrated Feed stuff

- PKC vs Grains Feeding
 - Grains and other starch products are highly fermentable results in
 - High energy wastage in the form of methane gas.
 - Production of increased level of acids (Propionic acid) further results in
 - Acidosis
 - Low intake and digestibility of roughages.
 - Undigested feed particles in feases.
 - Low milk fat percentage.
Amount of Grain Consumed Influences Intake and Digestibility of Forage
High Energy Source

- High contents of ME
- High contents of CF, make PKC/E, slowly fermentable, resulted in to
 - Less production of methane, and less loss of energy.
 - Production of Acetic acid, as the result of fermentation, which is precursor of the milk fat, ultimately increases the fat percentage of milk.
High Quality Protein

- Crude protein has two fragments
 - Rumen degradable Protein (RDP)
 - Rumen un-degradable Protein (RUP)
 - PKC/E is high in RUP content and its intestinal digestibility (Hindle et al., 1999; Woods et al., 2003)
 - RDP, meet the requirement of the rumen microbes, first, to convert in to microbial protein.
 - The amino acid profile of the microbial protein, becomes limiting factor for high milk production.
 - The RUP content of the ration considered when formulating diet for high milk yields.
Balanced Mineral Content

- Have high contents of Phosphorus (0.7 %), reduces the need of inclusion of expensive phosphorus sources, like DCP.
Good Palatability

- PKC/E is highly palatable in ruminants.
- No refusal due to rancid oil contents.
 - It contains Vitamin E, which acts as a natural anti-oxidant.
 - Its low content of unsaturated fatty acids also reduces rancidity problems.
Feed For Safe food

- NO Anti-Nutritional Factors
- Aflatoxin free, optimize intake and overall growth performance
 - High DM contents in PKC/E discourages growth of micro-organisms and mould.
- Free of toxic chemical and pesticides.
- Free of dioxin, like melamine
Availability

- The production of PKC/E in Malaysia is continuous throughout the year and this guarantees the uninterrupted supply and availability.
Cost Effectiveness

- **High Inclusion Levels**
 - High percentage of PKC/E, can be used as single ingredient or in combination with other ingredients.
 - Feeding of PKC up to 25% of Total mix ration, (Carvalho et al. 2006)
 - decreases the feed cost
 - without detrimental effects on productive responses
 - increased the milk protein content
 - Increased the milk lactose content.
Quality Evaluation of PKC
Quality Evaluation of PKC

- **Nutritional parameters**
 - (Minimum Factor)
 - Crude Protein
 - Crude Fat (Ether Extract)

- **Anti-nutritional parameters**
 - (Maximum Factor)
 - Moisture
 - Fiber
 - Ash
Breed insects to improve human food security